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We present noncanonical Poisson brackets for four theories of superfluids: irrotational *He, rotating %He, anisotropic
liquid 3He-A without spin, and anisotropic liquid 3He-A with spin included.

Introduction. Hamiltonian formulations for superfluids in terms of canonical Poisson brackets were first recog-
nized by Khalatnikov et al. [1—4], who found them to be a reliable means of discovering the correct two-fluid
equations of the phenomenological, macroscopic theory. In particular, canonical hamiltonian formulations were
given for two-fluid models of superfluids, including 4He [1], rotating 4He [2], and 3He-A [3,4].

However, the canonical approach for superfluids is flawed by the introduction of auxiliary, unphysical
“potentials”, which are required in order to complete the hamiltonian structure. Moreover, in the canonical formu-
lation, the velocities of the superfluid and normal fluid do not appear as dynamical variables, i.e., there are no vari-
ables conjugate to the velocities and the time derivatives of the velocities do not appear explicitly. Instead, the
velocities are determined by relations for the total momentum density, M, of the form,

M=M(p,q,Vp,Vq), 03]

where p, g are sets of canonically conjugate variables, some of which involve the unphysical potentials. The canon
ical equations are :

q=8H[ép, p=-89[q, @

for hamiltonian % [p, q]. The desired equations of motion for the physical variables must be determined from the
canonical equations via the relation (1) by algebraic manipulation. For more details, see, e.g., ref. [4].

Based upon a more physically-intuitive approach, Dzyaloshinskii and Volovik [5] have recently derived non-
canonical hamiltonian structures for superfluids, as well as for other hydrodynamic systems. Khalatnikov et al. [6]
have also introduced noncanonical hamiltonian structures for superfluids and so-called “quantum fluids”. These
noncanonical Poisson brackets are associated phenomenologically with geometrical transformation properties of
the physical variables and lead directly to equations of motion in hamiltonian form

F={H,F}, 3)

where the noncanonical Poisson bracket, {H, F}, is taken between any functional of the physical variables, F, and
the hamiltonian, H, which is the total energy of the system, as expected. Thus, the use of noncanonical Poisson
brackets presents a direct hamiltonian formulation of superfluid hydrodynamics in terms of physical variables.
Noncanonical Poisson brackets have also been introduced recently for various other nonlinear field theories of
physics, including the Maxwell—Vlasov equations [7}, magnetohydrodynamics [8,9], multifiuid plasma dynamics
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[9,10], nonlinear elasticity [5,9], and even chromohydrodynamics, which is the extension of multifluid plasma
physics to Yang—Mills fields [11]. For a survey of other applications of noncanonical brackets, see, e.g., ref. [12].
In each case, noncanonical Poisson brackets are summoned by the hamiltonian formulation of the theory in terms
of the physical variables.

Now, if the hamiltonian structure in terms of physical variables is noncanonical, there is no cause for regret.
Rather, there is an opportunity to investigate the theory further by associating its hamiltonian structure with an
appropriate Lie algebra, see, e.g., refs. [9] and [11].

Here we show for the superfluids 4He, rotating 4He, and anisotropic 3He-A (with, and without spin included),
that the canonical hamiltonian formulations of refs. [1—4] restrict properly to produce noncanonical Poisson
brackets, which confirm and extend the results in ref. [5]. We also associate these noncanonical Poisson brackets
for superfluids explicitly with differential Lie algebras. Moreover, we extend the results for >He-A to the case of
an arbitrary internal symmetry algebra.

Noncanonical brackets by restriction of canonical ones. As remarked in the introduction, the results derived
here depend upon canonical brackets for superfluids derived earlier by Khalatnikov et al. [1—4]. We follow a stan-
dard procedure for the derivation of noncanonical brackets by restriction of canonical ones, see, e.g., ref. [13]. In
each case, the restriction from canonical variables p, g, to noncanonical, physical variables is given by algebraic
and differential relations of the form (1).

Consequently, to report the results for each theory we simply tabulate (a) canonical variables, (b) physical vari-
ables to which we restrict, (c) the resulting Poisson bracket, {F, G}, between any two functionals, F, G, of the
physical variables, and (d) the association of the new bracket to a Lie algebra, including its mathematical notation
and commutator. With each of these Poisson brackets, the dynamical equations for the physical variables are then
expressible in the hamiltonian form, (3). The proper choice of the hamiltonian, H, for each theory can be found
in the references listed in each section.

A difficulty, in principle, with such Poisson brackets, even those found by restriction of a canonical bracket, is
to verify that they do, indeed, satisfy the Jacobi identity. However, since the brackets we derive are constructed
to be linear in their variables, they each may be associated readily with a Lie algebra. This guarantees that the
Jacobi identity is satisfied.

We use the following notation. D = D(R™), vector fields on R”; A! = A{(R"), i-forms on R"; @, a finite dimen-
sional Lie algebra; X, i Xjs elements of D; f, g, f,2€EA0;, wEA"; € A*-1, D acts upon itself by commutatlon of
vector fields and acts upon A by Lie derivation, denoted, e.g., X(£) for £ € Al For £&€ (3 L=L,é R
=¢9 € _,t° ,structure constants of G . Latin indices j = 1, ..., n; Greek indices 4, v, 6= 1, ..., m w1th m=dim §;

uy €y uv?
sum when indices repeat. Finally, the symbol © denotes the semidirect product.

Superfluid #He. For superfluid 4He, the canonical variables [1] are three canonically conjugate pairs (p, &),
(s, B), and (f, 7). In terms of these canonical variables, the physical variables are given by: p, mass density; a, the
phase of the order parameter, which is related to superfluid velocity, vs, by v5 = Va; s, entropy density; and M,
total momentum density, which is related to the other variables by

M=pVa+sVB+fVy. @

Via relation (4), one restricts from the canonical bracket to the Poisson bracket in physical variables.
The resulting bracket, for functionals, F, G, of variables [p, a, 5, M}, is found to be

{F,G} = {[(6G/8p)3;p + (6G[5c)ex | + (5G/[85)d;s + (8G/SMy Y (Mydy + 3, My )] 8F/5M;
+ (8G/8My)(pd 5F[5p — o 1 8F |80 + 59, 8F85)} + [(5F/5p)8G /50 — (5G[5p)8F 8c] , (5)

where = means equality, modulo divergences. The added notation is: 9; = 8/0x;; o= da/dx;; and 6G/6p, the
functional derivative of G with respect to p.
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The bracket, (5), agrees with the result of ref. [5], up to an overall minus sign. This bracket is the sum of two
parts: a semi-direct product and a two-cocycle. The first part, in curly brackets, represents the standard (Kirillov)
form [13] on the dual to the Lie lagebra

L=Do(A0 e A" @ AD) (6)

where the symbol e denotes the semi-direct product, as mentioned earlier, and ® denotes direct sum. The corre-
sponding commutator is given by

(X 5 0:8), (X £ 0:8)] = ([X, XT; X(f) — X(f); X(w) — X(w); X(8) — X(g)) - (7
Dual coordinates are: M dual to X €D; p to f € AD; a to w € A?; s to g € AC. The second part of the bracket
(5), not in curly brackets, represents the generalized two-cocycle on L, induced from the standard two-cocycle
(“symplectic form”) on (A? @ A”) via the natural projection D © (A0 @ A” & A0) > (AD & AM),

One can further restrict the bracket by exchanging the order parameter, a, for the superfluid velocity, vs. Since
v’ = Va, we introduce

P=M—pVa ®)
as a new variable. Actually, P is the relative normal momentum density. The resulting bracket is
{F,G} = [(8G/5p)d;p + (8G[6P; )P 3y, + 0;Py) + (6G/85)d;s + (8G/5M)(M; 0y, + 8,M )] 8F/6M;

+ (8G[8P)[(P;0y + 0P )8F/8P; + 50, 8F[8s] + (8G/85)0;s8F /8P,

+ (8F[6M; ) (00, 8F[6p + (P;0, + 8,P;)0F[6P;] + 59; 6F/bs , C)
which is the standard bracket on the dual to the Lie algebra whose commutator is given by
[(X15X2; 115 12), K13 %5 f15 )]

= (X, X1 X0 X501 + [X 1, Xo] - [X1, X0 (X + X)) () — (X + X)) X1 () — X1(F)) - (10)
Notice thgt there are no two-cocycles. The dual coordinates are: M dual to X, €D; Pto X, ED;stof1 € AD;p
to f, €EA®,

Rotating superfluid #He. In rotating superfluid 4He, vortices appear and the curl of the superfluid velocity is
nonzero. A canonical bracket for this case is known [2], for which there are four canonically conjugate pairs of
variables: (p, @), (s, B), (f, 7), and (d, a), where

divd=p . 1

This relation, (11), is preserved by the superfluid flow. In addition, the superfluid velocity,vs$, is given byvs =4
— Va.

In terms of the canonical variables, the physical variables are given by p, a, s, defined as before; as well as the
vector g; and
P=—sVﬁ—fV'y , Nk =—pa’k—djaj’k+(djak)’j . (12)

The vector a is the vorticial part of the superfluid velocity, N is the superfluid momentum density, and P is the
relative normal momentum density.
Remark: In ref. [2], the superfluid momentum density is taken to be

J=pvS —d X curlvs . (13)

This relation does not allow a proper restriction from canonical variables to physical variables directly. However,
under the nondynamical constraint, p = div d, one has J = N in (12), which can be properly restricted to give

427



Volume 91A, number 9 PHYSICS LETTERS 11 October 1982

the following bracket

{F,G} = {[(5G/8p)3;p + (8G[80)c | + (8G/[da)(ay | +a;0) + (BG/ON) (N 0y + 3Ny SF[6N,
+(8G/85)0,35F|SP; + (5G/6P,) [(P,d;, + 3P, )SF 5P, + 3, 5F/85]
+ (8G[SN) 03 8F[8p — o x 8F /80 + (Byay, — ay ) 8F50;]} + [(5G/8p)8F [ — (5G[5)8F]5p] . (14)

As with nonrotating 4He, this bracket, (14), is the sum of two parts: a semidirect product and a standard two-
cocycle. The first part, in curly brackets, corresponds to the dual of the Lie algebra

L=[Do(A0 e A" o An-1)] @ [D @ AD], (15)
and the remainder represents the two-cocycle on L induced from the canonical two-cocycle on (A? ® A™) by pro-
jection of L onto (A0 @ A™),

With notation as before, the commutator for the Lie algebra L is given by
[(X1: X3 f15 F25 03 0), (X5 X3 f13 o3 3 0)]

= (X1, X 11 Xa, X 15 X1(F) — Xi(f1)s Xo(fy) — X () Xy(w) — Xy(w); X1(8) — X1(6)) . (16)
Dual coordinates on L are: N dual to X, €D;PtoX,E€D; p tofIEAO; ato wWEA";ato € AL g tofzeAO.

Anisotropic superfluid 3He-A, without spin. In ref. [3], a canonical hamiltonian formalism is given for aniso-
tropic superfluid liquid 3He-A, without consideration of spin variables. In this case, there is a complex order pa-
rameter ¥ = ! +i¥2, The canonically conjugate pairs of variables are (o, @), (s, 8), (f, 7), and (F, ¥), where, in
the last pair,

v, =vl, F, =@/2m)py? . 7
Notice that the variables wy, F u» 1€ components of elements ¥, F, in @ ® AD, given by
w=w“én , F=Fué,, (18)

with basis elements é, in @. One cannot restrict the canonical bracket to physical variables for the arbitrary Lie
algebra @ . However, for the physical case § = SO(3), corresponding to 3He-A, the restriction is possible. Still, the
result can be generalized for arbitrary G, and we write this result for the general situation.

The physical variables for anisotropic 3He-A, without spin, are: mass density, p; entropy density, s; and

P=sVB+fVy, M=pVa+aVB+fVy—F,Vy,, L=L,é, =QmHh)[y,F]. (19)

Here P is the relative normal momentum density, M is the total momentum density, and L . are components of the
orbital angular momentum density.
When the canonical bracket is restricted to physical variables, the resulting bracket takes the following form:

{F, G} = [(56/8P)a1p + (5G/5s)81s + (8G/5Pk)(PI ak + aIPk) + (6G/6Mk)(MIak + ale) + (6G/6L#)81L”] BF/SMI
+ (8G/SMy) 3y SF 80 + s, 5F[5s + (Pdy, + ;P )SFISP, + L 0, 8F /5L, ]
+ [(8G/85)3;s + (5GISPYP,dy + 3, Py)) SF[SP, + (5GP )3, 8F 85 — (2mfH)%, Lo (8G/SL,)SFISL,,  (20)

where k,1=1, ..,nand o, u,v =1, ...,dim G. This expression, (20), is the standard bracket on the Lie algebra
with commutator given by
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[(X1; Xy f15 a3 F o), (X3 X g i3 fos F @ D]
= (X1, X1); (X5, X5] + (X1, X5] — [X), X,]5 (X + X0)(A) — (X + X)(1): X () — X1(f);
ffe[l,Fl+Xx(f)el - X (fel). (21

The dual coordinates are: M dual to X, ED;Pto X, ED;sto f{EAY; ptof, €A LtofeT €Aleg.
Anisotropic superfluid 3He-A, including spin. Canonical equations are given in ref. [4] for anisotropic super-
fluid 3He-A, with spin density included. In this case, the order parameter has both a spin part, which is a vector,
n,and an orbital part, which is a complex vector, ¥ = (! +i¥2). The canonically conjugate pairs of variables are
(s, 8), (n, n), (B!, W), @2, ¥2), (fL, yL), (fS, ¥S); where each of these vectors belong to § ® A®, with @
= SO(3) for 3He-A.
The physical variables are the following: entropy density, s; spin vector, n; the real and imaginary parts of the
orbital vector, Y1, ¥2;and

p=—2m(le? —v2ely, L=[¥1,01]+[¥2,é2]+[yL,fL], S=[n,n]+[yS,f5],
M=—(sVB+olVyl +¢2vy2 + 0 Vn, + LVl + vy (22)

Here p is mass density, m is the mass of the 3He atom, M is total momentum density, and L, S € @ ® A" are,
respectively, orbital angular momentum density and spin density.

As before, the restriction of the canonical bracket cannot be done for arbitrary § . However, it could be carried
out for § = SO(3), and the resulting bracket has meaning for arbitrary ¢:

{F,G} = [(5G/85)dys + (8G[dn,)n,, 1 + (BG[sYLIYL | + (8G/sY2)V2,
+(8G/8L,)3;L, + (8G/8S,)3;S,, +(8G/8p)d;p + (3G/ My )(M;dy, + 3 My )] 8F /oM
+ (8G/8My)[s3,8F |85 — n,, x8F[n, — YL xSF[8YL — U2 x8F[6U} + L, 048F/5L,, +5,8, 5F[8S), + pdidF/8p]
+(8G[6n,)8F (85,10 n, + 2m[(8GI8 YD) YL — (5G8YL)WE18F (60 + [(BG/5Y L) U1 + (8G[6Y2)Y21t! SF/SL,
+(8G/8L,) (12 (WL6F/8 YL + y28F|8Y2) +10,L 8F/SL,) + (5G/8S,)([t¥,n, 8F|6n, +13,5,6F/8S, ]
+2m(8G/8p) (W2 SF[6 Yy — wloFIsy2) . (23)
This bracket corresponds to the Lie algebra with the following commutator
[(X; f18T (5 fr 8T w1 @ 013wy © Dy s w3 @ 33 81382), (X3 f1oT15 £, 815 018 P15 0@ By w3 @ B3581;87)]
=([X,XLEX(f) el - X(f) el + fifie [T, T1: X(H)e Ty — X(fy) e, + f,f, ® [T, Ty 1;
X(w)) P — X(w,)® Py +fiw; @ [Ty, D] - flw; @ [T, D1];
X(wy) @ D) — X(w)) 8D, + fr5 @ [Ty, B3] — frwy @ [T, Py +2m(g w3 @ &5 — 103 © B3);
X(w3)® B3 — X(w3)®@ P + frw3 ® [Ty, B3] — frws ® [Ty, B3] +2m(gywy @ By — g1 wy ® Dy);
X(él)—X(g1)§X(§2)—X(82))- 249
Dual coordinates are: M dual to X €D; s tog, €A% ptog, €A0; Sto e, €EA%e @ ;Lto @, €AO

eg;ntow; P EA® QW tow, 8 Py EAN'@G ;W2 tow; @ P EA"RQG.
Notice the unexpested appearance of a (2m + 1)-dimensional subalgebra, formed by W1, ¥2 and p, whose mean-

3

ing is quite mysterious. Moreover, the conditions n,n, = ¢ and x[zl wl' +y ¢2 = ¢, (where ¢4 and ¢~ are arbitrary
utu 1 uru u¥u 02 1 2
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constants) are preserved by the dynamics. Also, one can easrly transform the bracket (23) from variables n,, J i,
l,’/# to new order parameters, [14], Al =n, d/l and A“ =n 1[/,, , if so desired.

In ref. [6], Lebedev and Khalatnrkov descrlbe a Poisson bracket for a so-called ““quantum fluid”. In this work,
certain noncanonical brackets appear, which are reminiscent of those given in the previous two sections for arbi-
trary Lie algebras. One major difference though, is that, for the bracket of ref. [6], the components of the super-
fluid velocity evidently commute among themselves {see, e.g., eq.(16) of ref. [6]}, whereas no such commutation
occurs in our case.

Conclusion. We have presented noncanonical Poisson brackets for superfluids as well as for superfluids general-
ized to an arbitrary symmetry algebra. Each of these noncanonical Poisson brackets has been associated with an
appropriate Lie algebra and dual coordinates have been identified. For the proper choices of hamiltonians, the
correct equations of superfluid dynamics may be recovered from these brackets.

It is a pleasure to thank Larry Campbell for Los Alamos National Laboratory for comments and explanations
of the physics of superfluids. We are also grateful to the Los Alamos Center for Nonlinear Studies, whose facilities
made this work possible.
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